## Geneva Sugar and Biofuels Conference

April 17-20 2023

Fairmont Grand Hotel Geneva, Switzerland


Tim Thys,
Global Laboratory Manager,
Control Union

Commodity Insights

## Caking of white sugar and how to prevent (and predict?) it:

 a technical perspective
## CONTROL UNION

Control Union is a family-owned entity, expert in testing, inspection and certification

countries


## 5000+

people



The Group is a family owned and non-listed company.
Long term vision - thinking in generations.

## Global activities



## Commodities

## Bio Tim

- Tim Thys (Antwerp, ${ }^{\circ} 1972$ ) graduated as a biochemist and holds a Master's in environmental sciences;
- Global Laboratory Manager with Control Union;
- Referee with ICUMSA for the subject Raw Sugar and associate referee for White Sugar and Sampling https://www.icumsa.org/subject/gs1-raw-sugar/
- advised sugar trading clients and law firms on quality issues for


## ICUMSA <br> V

International Commission for Uniform Methods of Sugar Analysis

Caking of white sugar and how to prevent (and predict?) it: a technical perspective

- cargo of white sugar all key quality parameters within specs
- yet finding lumps or caking of the same sugar upon discharge at destination
- What is it and what causes it?
- How to prevent it;
- Can one predict caking?


Caking (also called 'setting' or 'hardening') is the phenomenon in which refined sugar:

- ceases to be free-flowing due to the formation of lumps of agglomerated sugar crystals;
- extent to which a sugar is caked may vary:
from soft, friable lumps up to surface crusting and even rock-hard setting of large amounts of a sugar pile or bagged sugar cargo (Chen and Chou (1993).

Caking of white sugar: what \& why?

The main driver for caking is moisture:

1. either originating from the surrounding air, also called deliquescent caking
2. or from the uncontrolled release of so-called bound moisture that still is present inside the crystals of insufficiently conditioned or non-conditioned sugar, also called efflorescent caking (Chen and Chou, 1993).

White sugar = must be very low in moisture ( 0,015 - 0,030\%):

Yet, moisture content when leaving centrifuges and after drying and cooling: up to $0,1 \%=$ too high.


Therefore: sugar needs further "conditioning", also called "maturing" or "ripening.

- Instable layer $\rightarrow$ will crystalize;
- Bound be converted to "free" moisture $\rightarrow$ leaves crystals
- In "conditioning" silo = "controlled" environment.


Caking of white sugar: 1. moisture


5 controlunion



Typical conditioning curve in three runs (Rein,P. 2007)

## Conditioning plant guidelines (Rein, 2007)

| Conditioning temperature: | $40-50^{\circ} \mathrm{C}$ |
| :--- | :---: |
| Minimum conditioning time: | 24 hrs |
| Recommanded conditioning time: | 48 hrs |
| Relative humidity air: | $10-20 \%$ |
| Feed sugar moisture (from dryers): | $0,10 \% \mathrm{max}$ |
| Fine crystals (less than $300 \mu \mathrm{~m}$ ): | $10 \% \mathrm{max}$ |
| Post-conditioning target $\mathrm{in}^{\circ} \mathrm{C}:$ | $35^{\circ} \mathrm{C}$ max |



Caking stages (A, B, C and D) for sugar samples with varying crystal sizes 800, 630, 500, 400, 250 and below $250 \mu \mathrm{~m}$ ( $a, b, c, d$, e and f) exposed to varying ERH and temperatures (Mathlouthi and Rogé, 2004)


Caking of white sugar: 3. crystal size

1. Avoid packing / bagging of unconditioned sugar.....but how do you know????
2. Avoid bagging / loading sugar that is warmer than $35^{\circ} \mathrm{C}$ (unconditioned);
3. Sugar that is low in fines ( $<250 \mu \mathrm{~m}$ ), with a higher Mean Aperture (MA) and low Coefficient of Variation (CV).

Sample 2
Sample 1

| size (mm) | \% crystals |
| :---: | :---: |
| 1,250 | 3,4 |
| 1,000 | 18,0 |
| 0,800 | 37,8 |
| 0,600 | 25,2 |
| 0,400 | 9,2 |
| $\mathbf{0 , 2 0 0}$ | 4,4 |
| $\mathbf{0 , 0 0 0}$ | 2,0 |
| Mean Aperture MA: | $0,820 \mathrm{~mm}$ |
| Coefficient of Variation CV: | $30,0 \%$ |


| size (mm) |  |
| :---: | :---: |
| 1,250 | 0,9 |
| 1,000 | 7,8 |
| 0,800 | 14,6 |
| 0,600 | 21,0 |
| 0,400 | 30,2 |
| $\mathbf{0 , 2 0 0}$ | 15,0 |
| $\mathbf{0 , 0 0 0}$ | 10,5 |
| Mean Aperture MA: | $0,580 \mathrm{~mm}$ |
| Coefficient of Variation | $\mathbf{4 9 , 3} \%$ |




## Caking of white sugar: how to predict it?

1. Most commonly used moisture determination(ICUMSA GS2 ${ }_{/ 1 / 3 / 9}-15$ (2007)oven method "loss on drying" (LOD): only measures free moisture;
2. In unconditioned sugar, the high amount of bound moistyre not detected when using "loss on drying" method;


Location and total moisture versus LOD method (Burroughs and de Bruijn, 2008)
3. "total moisture determination" (Karl Fisher titration method) can capture both free and bound moisture:
bound moisture $=$ total moisture $(\mathrm{KF})-$ free moisture
4. Total moisture content of properly conditionned sugar should not exceed 0,05-0,06\% (van der poel et al, 1998).
5. ICUMSA GS4/7/3-12 to be upgraded to official method on white sugar.


Caking of white sugar: to conclude.....

1. Caking of white sugar is caused by three factors: moisture, temperature and crystal size
2. Unconditioned sugar can reveal perfectly normal "within specs" analysis results;
3. The loss on drying (oven) method only detects free moisture, not bound (which is high in unconditioned sugar)
4. "total moisture determination" capture both free and bound moisture, thereby predicting caking risks to a certain extent ( $\delta$ ceteris paribus).
5. Total moisture content of properly conditionned sugar should not exceed 0,050,06\%

## Thank you for your time

Tim Thys - tthys@controlunion.com

## Literature references:

Burroughs, P. and de Bruijn, J.M. (2008). Sugar Technology Training - China. British Sugar.
Chen, J. C.P. and Chou, C. (1993). Cane Sugar Handbook - a manual for cane sugar manufacturers and their chemists - $12^{\text {th }}$ Edition. p. 499-523. New York: John Wiley \& Sons.

ICUMSA (2007). ICUMSA GS2/1/3/9-15 (2007): The determination of sugar moisture by loss on drying.
Mathlouthi, M. and Rogé, B. (1999). Caking of white crystalline sugar. Université de Reims Champagne-Ardenne, Laboratoire de Chimie Physique Industrielle. Reims

Mathlouthi, M. and Rogé, B. (2002). Water vapour sorption and the caking of food powders. Presentation at Eurofood Water 2002. Université de Reims Champagne-Ardenne, Laboratoire de Chimie Physique Industrielle. Reims

Mathlouthi, M. and Rogé, B. (2004). Caking of white sugar and how to prevent it. Proceedings of the South African Sugar Technologists Association 78: p. 495-504.

Rein, P. (2007). Cane Sugar Engineering. Berlin: Verlag dr. A. Bartens
van der Poel, P.W., Schiweck, H. and Schwartz, T. (1998). Sugar Technology - Beet and Cane Sugar Manufacture. Berlin: Verlag dr. A. Bartens

